Übungen zur Vorlesung Algebra II Blatt 3

Abgabe von: Mein Name Tutor: Mein Lieblingstutor

1	2	3	4	Σ

Allgemeiner Hinweis: Für die Bearbeitung werden alle Resultate bis einschließlich Vorlesung 6 vorausgesetzt. Freiwillige Zusatzaufgaben sind mit einem * gekennzeichnet. Alle Aussagen sind stets zu beweisen.

Aufgabe 3.1 [2+2 Punkte]

- (a) Erläutern Sie ein Beispiel für einen kommutativen Ring R mit 1, einem endlich erzeugten R-Modul M und einem Untermodul N von M sodass N nicht endlich erzeugt ist.
- (b) Erläutern Sie ein Beispiel für einen Hauptidealbereich R und einem torsionsfreien R-Modul M sodass M nicht frei ist.

Lösung:

Aufgabe 3.2

[1+1+0,5+1+0,5] Punkte

Sei R ein Hauptidealbereich, p ein Primelement von R, $\nu \in \mathbb{N}$ und M ein nicht-triviales p^{ν} -Torsionsmodul von R.

- (a) Zeigen Sie, dass für $x \in M$ die Periode von x (bis auf Einheit) durch p^l mit $0 \le l \le \nu$ gegeben ist.
- (b) Sei ν nun insbesondere minimal sodass M ein p^{ν} -Torsionsmodul ist. Beweisen Sie die Existenz eines $x \in M$ mit Periode p^{ν} .

Habe von nun an $x \in M$ die Periode p^{ν} und sei $\overline{M} := M/Rx$.

- (c) Beweisen Sie, dass \overline{M} ein p^{ν} -Torsionsmodul ist.
- (d) Sei $y \in M$ der Periode p^l ein Vertreter von $\overline{y} \in \overline{M}$ mit Periode $p^{\overline{l}}$. Zeigen Sie $\overline{l} \leq l$.
- (e) Sei nun ν insbesondere minimal sodass M ein p^{ν} -Torsionsmodul ist und $\overline{\nu} \in \mathbb{N}$ minimal sodass \overline{M} ein $p^{\overline{\nu}}$ -Torsionsmodul ist. Beweisen Sie $\overline{\nu} \leq \nu$.

Lösung:

Aufgabe 3.3 [2+2 Punkte]

Sei K ein Körper, V ein K-Vektorraum und $\varphi\colon V\to V$ eine lineare Abbildung. Betrachten Sie die Verknüpfung

$$\begin{array}{ccc} \cdot \colon K[X] \times V & \to & V \\ (f,v) & \mapsto & f(\varphi)(v). \end{array}$$

(a) Zeigen Sie, dass V mit \cdot ein K[X]-Modul ist.

Sei nun ferner V endlich-dimensional und φ injektiv.

(b) Zeigen Sie, dass V ein endlich erzeugtes K[X]-Torsionsmodul ist.

Lösung:

Aufgabe 3.4* [1+2+1 Punkte]

Sei K ein Körper und V ein K[X]-Modul.

- (a) Zeigen Sie, dass V ein K-Vektorraum ist.
- (b) Beweisen Sie die Existenz einer eindeutigen K-linearen Abbildung $\varphi \colon V \to V$ von K[X]Moduln sodass die Skalarmultiplikation \cdot auf V als K[X]-Modul für alle $f \in K[X]$ und $v \in V$ durch $f(x) \cdot v = f(\varphi)(v)$ gegeben ist.
- (c) Folgern Sie die Existenz einer Bijektion

 $\phi \colon \{V \mid V \text{ ist } K[X]\text{-Modul}\} \to \{(V, \varphi) \mid V \text{ ist } K\text{-Vektorraum}, \varphi \colon V \to V \text{ ist } K\text{-linear}\}.$

Lösung:

Abgabe: Bis Freitag, den 14. Mai 2021, um 10:00 Uhr, direkt an den Tutor. Wir bitten die allgemeinen Hinweise zur Abgabe von Lösungen (siehe Homepage) zu beachten.